
Journal of Sound and <ibration (2000) 230(2), 411}446
doi:10.1006/jsvi.1999.2616, available online at http://www.idealibrary.com on

002
MODE STRUCTURE FOR FLUID}SOLID MEDIA AS
DERIVED BY LOW-FREQUENCY ASYMPTOTICS

S. IVANSSON

Division of Systems and ;nderwater ¹echnology, Defence Research Establishment,
SE-172 90 Stockholm, Sweden

(Received 29 March 1999, and in ,nal form 8 September 1999)

The modes in a laterally homogeneous #uid}solid medium can be classi"ed
according to their low-frequency behaviour. For each mode, the horizontal
wavenumber k (u) will tend to a complex limit q (possibly in"nite, but that appears
to be exceptional) as the angular frequency u tends to zero. The modes with
vanishing wavenumber limits q can be listed explicitly, they are "nite in number for
each particular medium. The non-zero "nite limits q appear as the zeros of certain
entire analytic functions, one particular function for each #uid or solid region in the
medium (and also for each Riemann sheet in the presence of homogeneous
half-spaces). The resulting low-frequency mode structure can be uncovered for each
#uid}solid medium by computing the wavenumber limits q as provided by the
di!erent regions. E$cient and reliable numerical techniques for this purpose are
proposed for homogeneously layered media, based on compound-matrix
factorization. The mode structure can be carried to higher frequencies by tracking
dispersion curves. The behaviour at double roots and branch points needs special
consideration. Two examples are studied in detail, one from plate acoustics and
one from underwater acoustics.

( 2000 Academic Press
1. INTRODUCTION

The mode structure for a horizontally in"nite, homogeneous and isotropic, #uid
plate with free or rigid boundaries in depth is very simple [1, section 3.1]. It can be
recovered directly from the dispersion function, a simple cosine or sine [2, section
5.4]. Without absorption, the horizontal wavenumber for each mode will move
from the real to the imaginary axis as the frequency is decreased, with a double root
at the origin for the cut-o! frequency. As the frequency is further decreased towards
zero, the modal wavenumber will tend to a non-vanishing imaginary constant
q given by cosh(qd)"0 or sinh(qd)"0, where d is the thickness of the plate.

The mode structure for a corresponding solid plate is much more complicated,
although the dispersion function can still be expressed explicitly in terms of
elementary functions (the Rayleigh}Lamb dispersion function). Much progress was
made by Mindlin and his associates, see references [3}5]. It became clear that the
dispersion trajectories consist of purely real, purely imaginary, and complex
branches. For a free plate, Sherwood [6] noted that the modal wavenumbers will
2-460X/00/070411#36 $35.00/0 ( 2000 Academic Press
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tend to complex limits q as the frequency tends to zero, where

sinh(qd)$qd"0 (1)

with d denoting the thickness of the plate. Useful reviews of these and other results
can be found in, e.g., references [7, section 6.8; 8]. Plates for which the Poisson ratio
is negative have been considered rather recently by Freedman [9].

Media with #uid and solid regions combined have also attracted interest.
Rokhlin et al. [10], Freedman [11], and Bao et al. [12], among others, have studied
the e!ects of #uid loading on Lamb mode spectra for homogeneous solid plates. In
this context, Crighton [13] has provided a useful discussion of the signi"cance of
leaky modes, with an unphysical exponential increase or inward direction of
oscillation in the #uid half-space (s). Trilayers, with two homogeneous solid plates
separated by #uid, have been considered in references [14, 15]. In all of these
studies, homogeneous isotropic #uid and solid regions were assumed, and the
dispersion function could be given explicitly in terms of elementary trigonometric
or hyperbolic functions.

Fluid}solid media with an arbitrary number of #uid and solid regions, and with
a general variation with depth for the velocity and density parameters, were
considered by Ivansson [16, 17]. By an asymptotic study of the dispersion function,
all normal modes for which the horizontal wavenumber tends to zero with the
frequency could be determined explicitly. Normal modes with non-vanishing but
"nite low-frequency wavenumber limits were shown to fall into region-dependent
classes, one class of modes for each #uid and each solid region in the medium.

It is the purpose of the present paper to further explore these recent results and
their implications for the mode structure of #uid}solid media. E$cient and reliable
techniques for computing the low-frequency wavenumber limits have to be
developed. Tracking dispersion curves as the frequency is varied will be the
essential tool for carrying the low-frequency mode structure to higher frequencies.

To be precise, the paper is concerned with laterally homogeneous, also called
range-independent, #uid}solid media that are linearly viscoelastic (absorption is
allowed) and isotropic. The medium properties are assumed to vary with z only,
where z is the depth co-ordinate. By &&#uid}solid'' we mean that there are a "nite
number of regions is depth, each of #uid or solid type. The medium can be
terminated above and below by traction-free, rigid, or (for a solid region)
mixed-condition boundaries, or by homogeneous #uid or solid half-spaces. The
mixed-condition boundary is characterized by vanishing horizontal displacement
and normal traction. A homogeneous half-space is itself considered as (part of )
a #uid or solid region. All regions will have non-vanishing thickness, with the
exception that we will allow a medium with some solid region to be terminated by
a #uid region with vanishing thickness and a rigid boundary. This is obviously
equivalent to a particular type of boundary conditions at the adjacent solid region:
vanishing vertical displacement and shear traction.

Only mono-frequency P-SV wave propagation, with harmonic time dependence
e~*ut assumed throughout, where u"2n f'0 is the angular frequency and t is
time, is considered. The complex horizontal slowness and the complex horizontal
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wavenumber are denoted by p and k"up, respectively. D(u, p) is the dispersion
function, whose zeros determine the modal p. In the presence of homogeneous
half-spaces, more than one Riemann sheet appears and D(u, p) is multi-valued.

The plan of the paper is as follows. Section 2 is devoted to a brief presentation of
the essential results needed from references [16, 17]. A heuristic proof of a key result
on asymptotic low-frequency medium separation is included. Section 3 is restricted
to homogeneously layered media. It is shown how the dispersion function D(u, p)
can be computed very e$ciently by compound-matrix factorization. Some
problems concerning mode tracking are addressed in section 4: passage of double
roots and branch points. A numerical cancellation problem is dealt with in
Appendix A. The mode structure is determined and analyzed in detail for two
particular media in sections 5 and 6. These examples concern plate acoustics
(section 5) and underwater acoustics (section 6). The "nal section 7 contains some
conclusions and some problems for further research.

2. LOW-FREQUENCY MODE STRUCTURE ACCORDING TO
REFERENCES [16, 17]

The LameH parameters for a "xed frequency are denoted by j (z) and k (z), and the
density is denoted by o (z). The P- and S-velocities for a "xed frequency are denoted
by a(z) and b (z), respectively. As in reference [16], we introduce the functions H(z),
L(z), and u(z) by

H(z)"
1

j (z)#2k(z)
, L(z)"

j(z)
j(z)#2k(z)

(2)

and

u(z)"
4k(z) [j (z)#k (z)]

j(z)#2k(z)
"4o(z)b2(z) [1!b2 (z)/a2(z)]. (3)

To allow for a viscoelastic medium, the functions j(z) and k (z) may depend on u. It
follows that a (z), b (z) and H(z), L(z), u(z) may depend on u as well. The subscript
0 is used to indicate limits as u tends to zero, and we write j

0
(z) and k

0
(z), for

example.
The subscripts F and S are used for #uid and solid regions, respectively. The

subscripts ¸ and ; are occasionally used for parameters of a lower and an upper
boundary condition (or homogeneous half-space), respectively. When the subscript
0 is needed in addition, we write u

L,0
, etc.

Put

p "p(u, q)"q/u , (4)

where q is a complex variable. Actually, q coincides with the horizontal
wavenumber k. For a #uid region, we will need the propagator matrix Q

F
(z, f)
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de"ned by Q
F
(f, f)"I, where I is the (2]2) identity matrix while z and f are depth

parameters, and

LQ
F
(z, f)

Lz
"q A

0
!o (z)

!o~1 (z)
0 B ) QF

(z, f). (5)

For a solid region, we analogously introduce the propagator matrix Q
S
(z, f)

de"ned by Q
S
(f, f)"I, where I is now the (4]4) identity matrix, and

LQ
S
(z, f)

Lz
"q A

0 1 k~1
0

(z) 0

!L
0
(z) 0 0 H

0
(z)

u
0
(z) 0 0 L

0
(z)

0 0 !1 0 B )QS
(z, f). (6)

We will also need the compound matrix Q
S
(z, f)D2 , which is a (6]6) matrix with the

(2]2) subdeterminants of Q
S
(z, f) as its elements [18]. It is obvious that

Q
S
(f, f)D2"I, where I is the (6]6) identity matrix. The ordinary di!erential

equation (ODE) system satis"ed by Q
S
(z, f)D2 is [17, (3.4)]

L[Q
S
(z, f)D2]
Lz

"q A
0 0 H

0
(z) !k~1

0
(z) 0 0

0 0 L
0
(z) 1 0 0

0 !1 0 0 1 k~1
0

(z)

!u
0
(z) !L

0
(z) 0 0 L

0
(z) !H

0
(z)

0 0 !L
0
(z) !1 0 0

0 0 u
0
(z) 0 0 0 B

) [Q
S
(z, f)D2]. (7)

The elements of Q
F
(z, f), Q

S
(z, f), and Q

S
(z, f)D2 are apparently entire analytic

functions of q.

2.1. THE MODE STRUCTURE

The structure for the class of low-frequency modes such that
lim infu?0

Dk (u) D(R was determined in references [16, 17]. It was shown that
limu?0

k(u)"q always exists for such a mode. Very explicit results for the modes
with q"0, "nite in number for each particular #uid}solid medium, were provided
in references [16; 17, Appendix A]. In particular, six possible asymptotic
low-frequency power-law dependencies of p (u) on u were isolated: u0, u~1@5,
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u~1@3, u~1@2, u~3@5, and u~2@3. The modes with non-vanishing low-frequency
wavenumber limits q, countably in"nite in number for each medium, are in direct
one-to-one correspondence with the set of q determined as follows [17, Theorem 5.1
and section 6.1]:

(i) Each interior #uid region F, i.e., a #uid region that is bounded by interfaces
to solid regions at depths f and z, with f(z, contributes with those
non-zero q that are zeros for the entire analytic function (Q

F
(z, f))

12
.

(ii) Each interior solid region S, i.e., a solid region that is bounded by interfaces
to #uid regions with non-vanishing thickness at depths f and z, with f(z,
contributes with those non-zero q that are zeros for the entire analytic
function (Q

S
(z, f)D2)

61
.

(iii) Each remaining #uid (F) or solid (S) region, considered to be an end region,
contributes with those non-zero q that are zeros for the appropriate entire
analytic function among Y )Q

F
(z, f) )XT, Y )Q

S
(z, f)D2 )XT, (Y )Q

F
(z, f))

2
,

(Y )Q
S
(z, f)D2)

1
, (Q

F
(z, f) )XT)

1
, and (Q

S
(z, f)D2 )XT )

6
. Excluding possible

homogeneous half-space parts, the region F or S is here assumed to cover the
depth interval (f, z), where f(z. The appropriate lower-end vector Y or
upper-end vector X is obtained from

Y"q~1 (0, 1) (free #uid),

Y"(1, 0) (rigid #uid),

Y"(!o
L
,$1) (#uid half-space),

Y"q (0, 0, 0, 0, 0, 1) (free solid),

Y"q~1 (1, 0, 0, 0, 0, 0) (rigid solid),

Y"(0, 0, 1, 0, 0, 0) (mixed-condition solid),

Y"(0, 0, 0, 1, 0, 0) (solid with vanishing rigid #uid),

Y"q (!u
L,0

/2, b2
L,0

/a2
L,0

,G1,$1,!b2
L,0

/a2
L,0

,

!(a~2
L,0

#b~2
L,0

)/(2o
L
)) (solid half-space,## and !! sheets),

Y"q3 (8o
L
b4
L,0

, 4b2
L,0

, 0, 0,!4b2
L,0

,

!2/o
L
) (solid half-space,!# and #! sheets), (8)
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or

X"(!1, 0) (free #uid),

X"q (0, 1) (rigid #uid),

X"q (G1, o
U
) (#uid half-space),

X"q (1, 0, 0, 0, 0, 0) (free solid),

X"q~1 (0, 0, 0, 0, 0, 1) (rigid solid),

X"(0, 0, 0, 1, 0, 0) (mixed-condition solid),

X"(0, 0, 1, 0, 0, 0) (solid with vanishing rigid #uid),

X"q (!(a~2
U,0

#b~2
U,0

)/(2o
U
), b2

U,0
/a2

U,0
,G1,$1, !b2

U,0
/a2

U,0
,

!u
U,0

/2) (solid half-space,## and !! sheets),

X"q3 (!2/o
U
, 4b2

U,0
, 0, 0,!4b2

U,0
,

8o
U
b4
U,0

) (solid half-space,!# and #! sheets), (9)

respectively.
A number of comments are needed here. For a homogeneous #uid half-space, the

upper and lower signs in equations (8) as well as (9) concern the Riemann sheets
de"ned by Ra(p)"(p2!a~2)1@2+p and Ra (p)+!p, respectively, for large p. For
a homogeneous solid half-space, we de"ne four Riemann sheets for large
p:##(Ra(p)+Rb(p)"(p2!b~2)1@2+p),!#(!Ra (p)+Rb(p)+p),#!(Ra(p)
+!Rb(p)+p), and !!(Ra (p)+Rb(p)+!p). The corresponding upper and
lower signs in equations (8) as well as (9) concern the ## and !! sheets,
respectively. In the presence of one or two homogeneous half-spaces, it should be
noted that each of the up to 16 Riemann sheets gets its own modes with non-zero
q according to (i)}(iii) above. As detailed in reference [17, section 2], some Riemann
sheets may be discarded from consideration.

The powers of q that appear occasionally in equations (8) and (9) may seem
super#uous. By keeping track of these (and some other) powers of q, however, the
number of modes with vanishing low-frequency wavenumber limits can be readily
identi"ed according to the argument principle of complex analysis [17, sections
5 and 6.1]. The total dispersion function D (u, p) [16] should be considered in this
context. Additional powers of q must be included at #uid}solid interfaces [17,
section 4.2].
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Media with interior #uid regions with vanishing thickness give rise to certain
complications as concerns modes with low-frequency wavenumber limits qO0 [17,
section 6.2], and we have chosen not to include them. There are also certain
&&exceptional media'' with unstable asymptotic low-frequency behaviour for some
leaky modes [16, section 7.1; 17, section 6.1 and Appendix A]. However, these
media will hardly appear in practice and we ignore to give a detailed discussion.

A key result is that the non-zero low-frequency wavenumber limits q are
contributed by each #uid and each solid region taken separately. In e!ect, each
#uid}solid interface is replaced by a two-faced boundary at low frequency, with
&&rigid'' towards the #uid and &&free'' towards the solid. Accordingly, the
low-frequency modes decouple into region-dependent classes, and this
classi"cation of modes extends to higher frequencies by continuous mode tracking
(section 4).

The proof of this e!ective medium separation at low frequency was provided in
reference [17] by an asymptotic analysis and factorization of the dispersion
function. Because of its signi"cance, we include here a heuristic argument as
a complement. It will be given in terms of certain transformed displacement-stress
vectors (that were also used in reference [17]).

2.2. TRANSFORMED DISPLACEMENT-STRESS VECTORS AND EFFECTIVE MEDIUM

SEPARATION AT LOW FREQUENCY

As in reference [19, (7.25) and (7.27)], we write the modal displacement-stress
vector as r(z)"(r

1
(z), r

2
(z), r

3
(z), r

4
(z))T. The components of r concern horizontal

displacement, vertical displacement, tangential stress on horizontal planes, and
normal stress on horizontal planes, respectively. However, it is often more
convenient to use the scaled vector

y (z)"(y
1
(z), y

2
(z), y

3
(z), y

4
(z))T"(ur

1
(z), ur

2
(z), r

3
(z), r

4
(z))T. (10)

For depths z and f in the same #uid region F, the "eld is determined by just two
components

y
F
(z)"(y

2
(z), y

4
(z))T"P

F
(z, f) ) y(f), (11)

where P
F
(z, f) is a (2]2) propagator matrix. Assuming that pO0, we introduce

transformed variables in F according to

x
F
"(x

2
, x

4
)T"diag(1, p) ) y

F
. (12)

It follows from reference [16, (2.10}11)] that

x@
F
(z)"upA

0
!o (z)

p~2H(z)!o~1(z)
0 B ) xF

(z). (13)
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Letting u tend to zero in such a way that q"upO0 is "xed, the ODE system (5),
de"ning the propagator matrix Q

F
, is obtained.

For depths z and f in the same solid region S, one needs all four components of

y
S
(z)"y(z)"P

S
(z, f) ) y (f), (14)

where P
S
(z, f) is a (4]4) propagator matrix. Assuming that pO0, we now

introduce transformed variables in S according to

x
S
"diag(p, p, 1, 1) ) y

S
. (15)

It follows from reference [16, (2.12}13)] that

x@
S
(z)"up A

0 1 k~1(z) 0

!L(z) 0 0 H(z)

u(z)!p~2o (z) 0 0 L (z)

0 !p~2o (z) !1 0 B )xS
(z). (16)

Letting u tend to zero in such a way that q"upO0 is "xed, the ODE system (6),
de"ning the propagator matrix Q

S
, is obtained.

We are now in a position to assess the behaviour at a #uid}solid interface,
between #uid region F and solid region S, as u tends to zero in such a way that
q"upO0 is "xed. Since the y

2
and y

4
variables are continuous across the

interface, it follows from equations (12) and (15) that

&&#uid-side x
2
''"p~1 &&solid-side x

2
'', (17)

&&solid-side x
4
''"p~1 &&#uid-side x

4
'' (18)

at the interface. The e!ective low-frequency interface conditions that develop are
indeed those prescribed by a separating two-faced boundary that is &&rigid'' towards
the #uid and &&free'' towards the solid. (Note that p tends to in"nity as u tends to
zero, according to our assumptions).

One can now understand how the mode-structure rules appear that were
formulated in section 2.1. The solid case, involving compound matrices, may
require some further comment, however. Consider a solid region S between depths
f and z, f(z, where (e!ective) boundary conditions for x

S
are speci"ed:

G
Ux

)x
S
(f)"0 and G

Lx
) x

S
(z)"0, where G

Ux
and G

Lx
are certain (2]4) matrices.

The condition for a corresponding low-frequency modal wavenumber limit
q coincides with the condition for a non-trivial solution x

S
, i.e.,

detA
G

Ux
G

Lx
)Q

S
(z, f )B"0, (19)
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where the relation x
S
(z)"Q

S
(z, f) )x

S
(f) has been used. Applying Laplace's

development of a (4]4) determinant in terms of (2]2) subdeterminants, and some
compound-matrix algebra [18], equation (19) can be reformulated as

Y )Q
S
(z, f)D2 )XT"0, (20)

where Y"(G
Lx

)D2 and X"[(G
Ux

)D2]
anti

, see reference [18, section 3].

3. NUMERICAL DETERMINATION OF THE LOW-FREQUENCY
WAVENUMBER LIMITS q

It follows from the mode-structure results in section 2.1 that a numerical
determination of the low-frequency modal wavenumber limits q boils down to
numerical determination of the zeros for certain entire analytic functions. We will
use adaptive winding-number integral techniques for locating such zeros in an
e$cient and reliable manner; see reference [20] for a description of our particular
algorithm. It is essential, however, that the analytic functions can be evaluated
e$ciently at arbitrary points. For this purpose, a restriction to homogeneously
layered media is most useful (at least for the solid regions).

Now, it is well-known that the propagator matrices for homogeneous layers can
be given explicitly. Such explicit expressions for P

F
, P

S
, and PD

2
S

can be found in
references [21, (35)], [22, (4)], and [21, (13)], respectively. For a whole #uid or solid
region composed of homogeneous layers, the &&total'' propagator matrix is
subsequently obtained by multiplication of the propagator matrices of the
individual layers.

According to the variable transformations that were introduced in section 2.2, we
may write

Q
F
(q)" lim

u?0
diag(1, p) )P

F
(u, p) )diag(1, p~1), (21)

Q
S
(q)" lim

u?0
diag(p, p, 1, 1) )P

S
(u, p) ) diag(p~1, p~1, 1, 1), (22)

QD
2

S
(q)" lim

u?0
diag(p, 1, 1, 1, 1, p~1) )PD

2
S

(u, p) )diag(p~1, 1, 1, 1, 1, p), (23)

where the zero-frequency limit is approached in such a way that p"q/u tends to
R (for "xed q).

For the rest of this section, we consider a homogeneous layer between depths
f and z, with f(z. We put d"z!f and understand that all propagator matrices
are taken &&from f to z''. Hence, Q

F
means Q

F
(z, f), etc. The arguments q, or u, p, are

also omitted for brevity. By equation (21) and reference [21, (35)], it readily follows
that

Q
F
"A

cosh(qd)
!o sinh(qd)

!o~1 sinh(qd)
cosh(qd) B . (24)
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In fact, it is here only essential that the density o is constant throughout the layer,
while the medium velocity a

0
may vary with depth (it does not appear in the ODE

system (5)).
Concerning Q

S
and QD

2
S

, the expressions [22, (4)] and [21, (13)] are not
convenient for letting u tend to zero in the way prescribed by equations (22) and
(23). Instead, we apply the alternative expressions (38) and (31)}(34) in reference
[21], that were derived there for numerical purposes. For the elements of Q

S
, we get

in this way

(Q
S
)
11
"cosh(qd)#(1!b2

0
a~2
0

)qd sinh(qd),

(Q
S
)
22
"cosh(qd)!(1!b2

0
a~2
0

)qd sinh(qd),

(Q
S
)
13
"[(b~2

0
!a~2

0
)qd cosh(qd)#(b~2

0
#a~2

0
) sinh(qd)]/(2o),

(Q
S
)
24
"[!(b~2

0
!a~2

0
)qd cosh(qd)#(b~2

0
#a~2

0
) sinh(qd)]/(2o),

(Q
S
)
12
"(1!b2

0
a~2
0

)qd cosh(qd)#b2
0
a~2
0

sinh(qd),

(Q
S
)
21
"!(1!b2

0
a~2
0

)qd cosh(qd)#b2
0
a~2
0

sinh(qd),

(Q
S
)
14
"(b~2

0
!a~2

0
)qd sinh(qd)/(2o),

(Q
S
)
32
"2ob2

0
(1!b2

0
a~2
0

)qd sinh(qd),

(Q
S
)
31
"2ob2

0
(1!b2

0
a~2
0

)[qd cosh(qd)#sinh(qd)],

(Q
S
)
42
"2ob2

0
(1!b2

0
a~2
0

)[!qd cosh(qd)#sinh(qd)]. (25)

For the remaining elements of Q
S
, we have the simple relations (Q

S
)
23
"!(Q

S
)
14

,
(Q

S
)
33
"(Q

S
)
11

, (Q
S
)
34
"!(Q

S
)
21

, (Q
S
)
41

"!(Q
S
)
32

, (Q
S
)
43
"!(Q

S
)
12

, and
(Q

S
)
44
"(Q

S
)
22

.
The elements of QD

2
S

become

(QD
2

S
)
13
"[(b~2

0
#a~2

0
) cosh(qd) sinh(qd)!(b~2

0
!a~2

0
)qd]/(2o),

(QD
2

S
)
14
"![(b~2

0
#a~2

0
) cosh(qd) sinh(qd)#(b~2

0
!a~2

0
)qd]/(2o),

(QD
2

S
)
23
"!b2

0
a~2
0

cosh(qd) sinh(qd)#(1!b2
0
a~2
0

)qd,

(QD
2

S
)
24
"b2

0
a~2
0

cosh(qd) sinh(qd)#(1!b2
0
a~2
0

)qd,
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(QD
2

S
)
31
"2ob2

0
(1!b2

0
a~2
0

) [cosh(qd) sinh(qd)!qd],

(QD
2

S
)
41
"!2ob2

0
(1!b2

0
a~2
0

) [cosh(qd) sinh(qd)#qd],

(QD
2

S
)
16
"[(b~2

0
#a~2

0
)2 sinh2(qd)!(b~2

0
!a~2

0
)2 (qd)2]/(4o2),

(QD
2

S
)
61
"4o2b4

0
(1!b2

0
a~2
0

)2 [sinh2(qd)!(qd)2],

(QD
2

S
)
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"cosh2(qd),

(QD
2

S
)
34
"!sinh2(qd),

(QD
2

S
)
43
"!sinh2(qd),

(QD
2

S
)
11
"1#(1!b4

0
a~4
0

) sinh2(qd)#(1!b2
0
a~2
0

)2 (qd)2,

(QD
2

S
)
22
"1#b4

0
a~4
0

sinh2(qd)!(1!b2
0
a~2
0

)2 (qd)2,

(QD
2

S
)
12
"![b2

0
a~2
0

(b~2
0

#a~2
0

) sinh2(qd)!b~2
0

(1!b2
0
a~2
0

)2 (qd)2]/(2o),

(QD
2

S
)
21
"!2ob2

0
(1!b2

0
a~2
0

) [b2
0
a~2
0

sinh2(qd)#(1!b2
0
a~2
0

) (qd)2]. (26)

The list is completed by the simple relations (QD
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2
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2

S
)
46
"!(QD

2
S

)
13

, (QD
2

S
)
36
"!(QD

2
S

)
14

,!(QD
2

S
)
51

"(QD
2
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S
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S

)
45
"(QD

2
S

)
23

,!(QD
2
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.
In analogy to reference [21, (14)}(15)], we may note that

(QD
2

S
)
16
"!4(QD

2
S

)
13

(QD
2

S
)
14
"!4(QD

2
S

)
36

(QD
2

S
)
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, (27)
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S
)
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S

)
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(QD
2

S
)
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"!4(QD

2
S

)
31

(QD
2

S
)
41

, (28)

where an underlined quantity is to be evaluated with d replaced by d/2 in equation
(26).

For a homogeneous solid plate with free boundaries, the simple equations (1) are
obtained directly from our expression for (QD

2
S

)
61

. (For another derivation, using
l'Ho( pital's rule, see reference [7, section 6.8]. We realize that the independence of a

0
and b

0
is lost in other cases, for example when the plate is rigidly held and the

expression for (QD
2

S
)
16

becomes relevant.
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3.1. PROPAGATOR-MATRIX FACTORIZATION FOR ENHANCED COMPUTATIONAL
EFFICIENCY

In references [22, 23], we advocated matrix factorization techniques to speed up
propagator computations for homogeneously layered media. The basic idea is to
write the propagator matrix for each layer as a product of sparse matrices, which
can be applied in sequence to the vector being propagated (a row vector from the
left or a column vector from the right). A useful factorization of this type for the
expression of Q

F
according to equation (24) is

Q
F
"

1
2

diag(1, o) A
1

!1
1
1B diag(eqd, e~qd) A

1
1

!1
1B diag(1, o~1). (29)

It is readily derived from the de"nitions of the hyperbolic functions.
A factorization of Q

S
is not as apparent, but it can be obtained by standard ODE

system techniques, involving a Jordan decomposition of the degenerate system
matrix appearing in equation (6). We may write

A
0 1 k~1

0
(z) 0

!L
0
(z) 0 0 H

0
(z)

u
0
(z) 0 0 L

0
(z)

0 0 !1 0 B"T~1 )J )T, (30)

where

J"A
1 2 0 0

0 1 0 0

0 0 !1 0

0 0 !2 !1 B (31)

corresponding to the multiple and degenerate eigenvalues $1, and

T"

1
2(1#h) A

1 !1 h !h

1 1 1 1

!1 1 1 !1

!1 !1 h h B diag(1, 1, (2k
0
)~1, (2k

0
)~1), (32)

T~1"diag(1, 1, 2k
0
, 2k

0
) A

1 h !h !1

!1 h h !1

1 1 1 1

!1 1 !1 1 B (33)
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are variable-transformation matrices. The layer parameter h is de"ned by
h"1#2k

0
/(j

0
#k

0
). Among the possible representations of Jordan type, we have

taken care to choose one for which the useful antisymmetry property &&>
5
"!>

2
''

[22, (9)] can be maintained during the implied compound-matrix propagation (see
below).

The propagator matrix U for the simple four-dimensional ODE system
u@"qJ ) u, given in terms of the vector function u(z)"(u

1
(z), u

2
(z), u

3
(z), u

4
(z))T,

can be written

U"A
1 2qd 0 0

0 1 0 0

0 0 1 0

0 0 !2qd 1 B diag(eqd, eqd, e~qd, e~qd) (34)

and Q
S

may be factorized as

Q
S
"T~1 )U )T. (35)

Extending the factorizations of T and T~1 slightly, we "nally obtain

Q
S
"diag(1, 1, 2k

0
, 2k

0
) A

1 1 0 0

!1 1 0 0

0 0 1 1

0 0 !1 1 B A
1 0 !h 0

0 h 0 !1

1 0 1 0

0 1 0 1 B
]A

1 2qd 0 0

0 1 0 0

0 0 1 0

0 0 !2qd 1 B diag(eqd, eqd, e~qd, e~qd) (36)

]
1

2(1#h) A
1 0 h 0

0 1 0 1

!1 0 1 0

0 !1 0 h B A
1 !1 0 0

1 1 0 0

0 0 1 !1

0 0 1 1 B
]diag(1, 1, (2k

0
)~1, (2k

0
)~1).

Of course, we would recover equations (25) by multiplying together the factor
matrices. Note that

1!b2
0
a~2
0

"

2
1#h

and 1#b2
0
a~2
0

"

2h
1#h

. (37)
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Since the compound matrix of a product is equal to the product of the individual
compound matrices, equation (36) provides an obvious starting point for
decomposing QD

2
S

. With some additional decomposition we arrive at

QD
2

S
"diag(1, 2k

0
, 2k

0
, 2k

0
, 2k

0
, 4k2

0
)

]A
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 !1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
B A

2 0 0 0 0 0

0 1 1 1 1 0

0 0 1 !1 0 0

0 !1 0 0 1 0

0 1 !1 !1 1 0

0 0 0 0 0 2
B

]A
h 0 !1 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

0 0 0 h 0 1

0 0 0 0 1 0

0 0 0 !1 0 1
B A

1 0 0 h 0 0

0 1#h 0 0 0 0

0 0 1 0 0 !h

!1 0 0 1 0 0

0 0 0 0 1#h 0

0 0 1 0 0 1
B

]A
1 0 0 0 0 0

0 1 0 2qd 0 0

0 !2qd 1 !4q2d2 2qd 0

0 0 0 1 0 0

0 0 0 !2qd 1 0

0 0 0 0 0 1
B diag (e2qd, 1, 1, 1, 1, e~2qd) (38)

]
1

4(1#h)2 A
1 0 1 0 0 0

0 1 0 0 0 0

!1 0 h 0 0 0

0 0 0 1 0 !1

0 0 0 0 1 0

0 0 0 1 0 h
B A

1 0 0 !h 0 0

0 1#h 0 0 0 0

0 0 1 0 0 h

1 0 0 1 0 0

0 0 0 0 1#h 0

0 0 !1 0 0 1
B
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]A
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 !1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
B A

2 0 0 0 0 0

0 1 !1 !1 1 0

0 0 1 !1 0 0

0 1 0 0 !1 0

0 1 1 1 1 0

0 0 0 0 0 2
B

]diag(1, (2k
0
)~1, (2k

0
)~1, (2k

0
)~1, (2k

0
)~1, (4k2

0
)~1).

Care has here been taken to maintain the useful antisymmetry property
&&>

5
"!>

2
'' [22, (9)] during the sequence of sparse-matrix multiplications that

arise when a row vector Y"(>
1
, >

2
, >

3
, >

4
, >

5
, >

6
) is propagated from the left. It

is in general necessary to apply some scaling of the diagonal matrix involving the
exponentials in order to avoid over#ow, cf. reference [22, section 5]. The sequential
application of equation (38) is much more e$cient and convenient than a direct
multiplication using equations (26)}(28).

The asymptotic mode shapes x
F
(for a #uid region) and x

S
(for a solid region) may

be computed by compound-matrix stabilization techniques as suggested in
reference [24, section 4.1]. It is easily realized that &&back-propagation in large
steps'', according to reference [18, Appendix A], is feasible in connection with the
non-diagonal matrix U of (34) as well.

4. IMPLIED MODE STRUCTURE AT HIGHER FREQUENCIES
BY MODE TRACKING

It follows from the results and techniques of sections 2 and 3 how the
low-frequency mode structure can be determined for each particular #uid}solid
medium, including all modes for which lim infu?0

Dk (u) D(R. By tracking
continuous mode trajectories, for increasing frequency, the low-frequency mode
structure can apparently be carried to higher frequencies. A given mode at high
frequency may conversely be connected to its low-frequency &&origin'' by tracking
the corresponding p(u) or k(u) for decreasing u. It is convenient to combine the
winding-number integral algorithm of reference [20] with a simple procedure to
step out in frequency utilizing p@(u) or the group slowness k@(u)"p (u)#up @(u),
which can be conveniently computed [24]. With con"dence in these numerical
techniques, it is in fact easy to verify that a modal slowness p(u) is exactly on the
real or imaginary axis. We obtain the number of modal slowness within small
rectangles, according to the argument principle, and an isolated modal slowness
close to the axes must typically be on the axes, since o!-axes p do in general appear
in pairs (p and its complex conjugate pN , or p and !pN ) according to symmetry
arguments for the dispersion function D(u, p).

At very low frequencies, the mentioned mode tracking may run into problems.
Numerical precision may be lost by cancellation e!ects when individual
propagator-matrix elements are formed according to the usual compound-matrix
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formulas for homogeneously layered media. Alternative, cancellation-free,
expressions are needed under these circumstances. The expressions derived in
reference [21], for application to slow-mode computations, turn out to be
adequate, see Appendix A.

Some further mode-tracking problems, that we wish to address in this section,
concern the passage of double roots (for p or k, at a "xed positive u) and branch
points (in the presence of homogeneous half-spaces). Until further notice in section
4.4, we assume that the medium is absorption-free with real medium slownesses. In
addition, homogeneous half-spaces are excluded in section 4.1.

4.1. PASSAGE OF DOUBLE ROOTS FOR A MEDIUM WITHOUT HOMOGENEOUS HALF-SPACES

At each frequency, the modal slownesses p appear in pairs, since p and !p
appear simultaneously. O!-axes modal slownesses even appear in quartets in the
absorption-free case, since p, pN ,!pN ,!p (where the complex conjugate is denoted
by a bar) appear simultaneously under these circumstances. (The dispersion
function D(u, p) will be real-valued for real, and imaginary, p. It is also analytic in p,
for each u.)

It follows that a modal slowness at the origin must be a double root. The simplest
examples are provided by all-#uid media, for which the modal slownesses are
con"ned to the axes. When u is decreased through a cut-o! frequency u

c
, the

corresponding modal slowness p moves from the real axis to the imaginary axis
(e.g., reference [2, section 5.4]). The power expansion of D(u, p) at u

c
, p

c
"0 starts

with some multiple of p2!c
c
(u!u

c
), where c

c
is a positive constant [25, section

3.1], which determines the behaviour of p(u) for u close to u
c
.

The low-frequency modal wavenumber limits qO0 contributed by the solid
regions in a medium will typically be complex, o! the axes. This is indeed the case
for a homogeneous solid plate with free boundaries, according to the simple
equations (1). The o!-axes q appear in quartets in the absorption-free case: as
q, qN ,!qN ,!q. In order to produce such a combination at low frequency, two pairs
of real high-frequency modal slownesses p

1
,!p

1
and p

2
,!p

2
must combine. The

way they may combine is by forming a double root somewhere on the axes. For an
example, see reference [25, section 3.4].

The typical behaviour at a multiple root p
0

at u
0

is that &&stars'' are formed on
entry to and exit from p

0
. This follows from general considerations of D (u, p) as an

analytic function of p for each u, e.g., references [8, p. 171; 25, Proposition 1].

4.2. PASSAGE OF BRANCH POINTS FOR A MEDIUM WITH HOMOGENEOUS HALF-SPACES

In the presence of one or two homogeneous half-spaces, we agree to de"ne
Riemann sheets as follows (cf. the paragraph following equations (8) and (9)). For
a homogeneous #uid half-space with slowness a~1, a#sheet is de"ned
by Ra (p)"(p2!a~2)1@2"pJ1!a~2p~2 and a !sheet is de"ned by Ra (p)"
!pJ1!a~2p~2. Here, the square root J is chosen according to its principal
branch with !n/2(arg(J))n/2.
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For a homogeneous solid half-space with P- and S-slownesses a~1 and b~1,
a ## sheet is analogously de"ned by Ra (p)"pJ1!a~2p~2 and
Rb(p)"(p2!b~2)1@2"pJ1!b~2p~2 . Three other sheets, !#, #!, and
!!, are introduced in the obvious way with &&Ra (p)'' speci"ed before &&Rb(p)''.

These particular Riemann sheets are perfectly adapted to a study of modes for
large p, since the branch cuts will be bounded arcs connecting positive and negative
branch points, and each Ra(p) or Rb(p) will be analytic for all large p. It should be
noted that if p is a modal slowness, !p will be a modal slowness on the &&opposite''
sheet (!instead of #, #! instead of !#, etc.). In the absorption-free case, the
modal slownesses p and pN appear simultaneously on the same sheet, since the
analytic dispersion function D(u, p) will be real-valued for large real p. These rules
are quite useful. The &&physical sheet'' will agree with the # (or ##) sheet in the
right half-plane and with the ! (or!!) sheet in the left half-plane.

Except for media with low-velocity half-spaces, modal slowness trajectories p (u)
will typically hit the branch point with the largest slowness. (The mirror branch
point on the negative axis will of course also be involved). For de"niteness, we
assume that this branch point with the largest slowness is an S-wave branch point
for a lower homogeneous solid half-space, and we denote it by b~1

L
. The key

observation now is that, by isolating RbL
(p), the dispersion function D (u, p) can be

expressed as

D(u, p)"A (u, p)RbL
(p)#B(u, p), (39)

where A(u, p), B(u, p) are new &&dispersion-like'' functions only involving branch
points with magnitude smaller than b~1

L
. This follows directly from reference [16,

(2.19)]. In the absorption-free case, A (u, p) and B(u, p) will both be real-valued (and
regular) for real p in a neighbourhood of b~1

L
. When there are lower velocities than

b
L

in the medium, giving B(u, b~1
L

) an oscillating character as u is varied, the
branch point b~1

L
will be hit for frequencies u

b
such that B(u

b
, b~1

L
)"0. Assuming

A(u
b
, b~1

L
)O0 and (LB/Lu) (u

b
, b~1

L
)O0, which is the typical case, it follows that

the mode trajectory p (u) for u close to u
b

is real with

RbL
(p(u))+(u!u

b
)¹, (40)

where ¹"!(LB/Lu) (u
b
, b~1

L
)/A (u

b
, b~1

L
). In particular,

p(u)+b~1
L

#(u!u
b
)2¹2b

L
/2 (41)

and p(u) will &&bounce out'' and change Riemann sheets when u passes through u
b
.

The behaviour is related to the approach of a pure branch point limit slowness as
considered in reference [16, section 4.1].

As will be seen in section 6, the typical mechanism for entering real modal
slownesses p (u) from the physical sheet into the complex plane, as u is decreased,
appears to be the following. At "rst, the branch point with maximum slowness is hit
(according to equation (41), for example) and the Riemann sheet is changed. As u is
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decreased further, the real p (u) increases until it collides with another mode
slowness trajectory that has resided on the present leaky Riemann sheet all the
time. A double root is formed and both modal slownesses leave the real axis,
initially in the orthogonal direction, as complex conjugate numbers. This
mechanism appears to be typical for homogeneous #uid as well as solid half-spaces,
simple Pekeris waveguides included [2, section 2.4.5]. (It might appear from
reference [2, p. 127] that p(u) would leave the real axis already at the branch point,
but this is not the case.)

A "fth double-root type of example is obtained in this way, in addition to the four
examples in reference [25]. However, it may also happen that a mode proceeds
along the positive real slowness axis, on a non-physical sheet after having hit the
branch point, in such a way that the wavenumber k (u) tends to a real q as u tends
to zero. We do not know if positive real wavenumber limits q are possible on the
physical sheet.

It should be observed that branch points with smaller magnitude will typically
not be hit exactly. In the present context, for example, with a lower homogeneous
solid half-space, an isolation of RaL(p) according to D(u, p)"A

1
(u, p)RaL(p)#

B
1
(u, p) will imply a complex-valued B

1
(u, p) for real p close to a~1

L
, because of

RbL
(p). Zeros of B

1
(u, a~1

L
) may of course appear at complex u, but the real and

imaginary parts of B
1
(u, a~1

L
) will typically not vanish for the same real u.

4.3. APPROACHING THE WAVENUMBER LIMIT q AS u TENDS TO ZERO

The medium slownesses a~1 and b~1 will not depend on u in the absorption-free
case. As u tends to zero, each modal wavenumber trajectory k (u)"up(u) will
reach its limit q. It follows from equations (13) and (16) that terms of magnitude
O(p~2), or O(u2), are lost when the ODE systems (5) and (6) for the wavenumber
limits q are derived. Hence, for qO0, we may conclude that

k(u)+q#cu2 (42)

for some c as u tends to zero. In particular, limu?0
k@(u)"0.

4.4. INCLUDING ABSORPTION

When absorption is introduced into the medium, with complex medium
slownesses, the double roots will in general disappear and the branch points will
not be hit exactly. This is a consequence of the fact that the reduction to
a real-valued function is lost. Trajectory identi"cation may become easier, however.
In fact, introduction of slight absorption is often useful to pair together path
segments upon exit from a double root. The change of Riemann sheets close to
a branch point will now be achieved by a path around the branch point, crossing the
branch cut.

For a real slowness trajectory p(u) on the physical Riemann sheet in the
absorption-free case, it is natural to require the group slowness Lk/Lu to be positive
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(e.g., reference [10, section 1A]). This dictates the choice of a positive or negative
p(u). It follows from reference [19, (7.78)], and the fact that bulk and shear moduli
are restricted to the fourth quadrant [26, section 9.5], that this choice is consistent
with the requirement that p(u) get a positive imaginary part when absorption is
introduced.

5. AN EXAMPLE FROM PLATE ACOUSTICS

A solid}#uid}solid trilayer surrounded by air, with a 0)83 mm glass plate and
a 0)61 mm aluminium plate separated by 0)55 mm water, was considered in
reference [14]. The P- and S-velocity parameters of the glass were 5)568 and
3)402 km/s, and the glass density was 2)2 kg/dm3. The corresponding parameters
for the aluminium were 6)452 and 3)100 km/s, and 2)7 kg/dm3, and the water
velocity was 1)478 km/s. No absorption was introduced. A point made by the
authors was that the dispersion curves of the trilayer could be analyzed in terms of
the dispersion in the decoupled constituent layers. Considering quotients of
acoustic impedances, they inferred that the glass and aluminium plates should be
considered stress-free at their interfaces, while the water layer should be considered
to be rigidly held.

The interface conditions proposed in reference [14] are obviously of the same
type as those introduced in section 2.1. By turning to very low frequencies, below
cuto! where the modal slowness leaves the real axis, which was not done in
reference [14], we have seen that these interface conditions emerge regardless of the
acoustic impedance values. Applying the techniques and results of sections 2 and 3,
the low-frequency mode structure (for modes such that lim infu?0

Dk(u) D(R) can
be speci"ed as follows. For convenience, the surrounding air is replaced by vacuum.

There are 14 modes for which limu?0
k(u)"0. We have two quasilongitudinal

waves for each of the two solid layers [16, Theorem 4.1(i)], four bending waves of
asymptotic type u~1@2 for p (u) [16, Theorem 6.1(ii)], and six bending waves of
asymptotic type u~2@3 for p (u) [16, Theorem 6.1(iv)]. These 14 modes are depicted
schematically in Figure 1.

The modes with non-zero wavenumber limits q are in"nite in number, and the
q values close to the origin are shown in Figure 2. Considering the modes to be
&&born'' at low frequency, we get a classi"cation according to glass-born, water-
born, and Al-born modes. In this case, the q for glass- and Al-born modes are
obtained from the simple equations sinh(qd)$qd"0 according to equation (1),
and the di!erent thicknesses of the glass and aluminium layers are directly re#ected
in Figure 2. (For non-homogeneous solid regions, including coating, for example,
the compound-matrix computation techniques of section 3 would be needed). The
limits q for the water-born modes appear as q"nni/0)55 mm~1, where n is
a non-vanishing integer, according to section 2.1 and equation (24).

Usual dispersion curves for real p are drawn in Figure 3. Compared to the
corresponding curves in reference [14, Fig. 10], there are a few di!erences. The
vertical axis is for horizontal slowness in s/km rather than incidence angle in
degrees, and it extends to 0)75 s/km in order to include the two slow modes with
real p(u) tending to in"nity as u tends to zero. These modes have been given the



Figure 1. Con"guration in principle of the 14 modal slownesses p (u) with limu?0
k (u)"0 for

a solid}#uid}solid medium with free boundaries. There are six modes on an outer circle tending to
in"nity like u~2@3, four modes on an inner circle tending to in"nity like u~1@2, and four modes with
slownesses tending to real constants. The mode numbers give the connection to the dispersion curves
in Figure 3.
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numbers 0 and 00. Parts of the slowness trajectories for modes 10, 12, and 15 have
been shifted to negative p to comply with the requirement of a positive group
slowness (section 4.4).

By mode tracking in the complex plane, below cuto! and down to very low
frequencies, we may connect the modes shown in Figure 3 to the low-frequency
mode structure shown in Figures 1 and 2. The appropriate mode numbers from
Figure 3 have actually been included already in Figures 1 and 2. The seven modes
with vanishing low-frequency wavenumber limits (half of 14 modes, taking account
of #! symmetry) are modes 0, 00, 1, 2, 3, 5, and 6. Here, modes 1 and 2 are the
quasilongitudinal modes, modes 00 and 5 are the bending waves of asymptotic type
u~1@2 for p(u), and modes 0, 3, and 6 are the bending waves of asymptotic type
u~2@3 for p(u). Among modes with qO0, modes 8, 10, 14, 15 are glass-born, modes
4, 7, 9, 13, 16 are water-born, and modes 11, 12, 17 are Al-born. All modes in Figure
1 and all modes with small q in Figure 2 are indeed included, suggesting
a one-to-one correspondence with the set of modes for which p becomes real as
u becomes large.

Figures 4 and 5 show some modal slowness trajectories, in schematic form, as
determined by the mode tracking for decreasing u. Mirror modes, for $p, are
indicated by a minus sign and dotted trajectories. For clarity, the trajectories have
been displaced from the axes even when p (u) is real or imaginary. In particular, the



Figure 2. Non-vanishing low-frequency wavenumber limits for the solid}#uid}solid medium in
section 5. Glass-, water-, and Al-born modes are denoted by the symbols *, s, and d respectively. The
mode numbers give the connection to the dispersion curves in Figure 3. The bars on the axes denote
$5 mm~1. Note the signi"cantly di!erent scales for the real and imaginary parts.

Figure 3. Dispersion curves for the solid}#uid}solid medium discussed in section 5.
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horizontal and vertical line segments close to the axes are actually on the real and
imaginary axes, respectively. The upper panel of Figure 4 shows the typical
trajectory for a #uid-born mode, with a double root at the origin formed by the
mode and its mirror mode (section 4.1).



Figure 4. Trajectories for p(u), in principle, as u decreases for the solid}#uid}solid medium. Upper
panel: A is for modes 7, 13, 16. Middle and lower panels: the mode numbers have been indicated.
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The middle panel of Figure 4 concerns modes 5 and 4, with two double roots at
the origin (one for modes 5 and !5, and one for modes 4 and !4) and two double
roots on the positive imaginary axis (both involving modes 5 and 4). For low
frequencies, the p (u) for modes 4 and 5 proceed with di!erent speeds towards
in"nity along the positive imaginary axis, in such a way that k(u) for mode 4 tends
to an imaginary number whereas k (u) for mode 5 tends to zero (u1@2p(u) for mode
5 tends to an imaginary number).

The two modes 6 and 3, of asymptotic type u~2@3 for p (u) and with complex
low-frequency limits for u2@3p(u), appear in the lower panel of Figure 4. There are



Figure 5. Trajectories for p (u), in principle, as u decreases for the solid}#uid}solid medium.
Middle panel: modes (A, B) are modes (12, 11), (15, 14). Upper and lower panels: the mode numbers
have been indicated. Concerning the lower panel, there is a tiny additional feature which has not been
included. Mode 10 actually turns back and forth once on its way down the imaginary axis after
colliding with mode 9. (Of course, the mirror mode !10 exhibits the analogous behaviour).
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two double roots at the origin (one for modes 6 and !6, and one for modes 3 and
!3) and one double root on the positive imaginary axis.

It was noted in section 4.1 that solid-born modes have to combine by forming
a double root on the axes in order to produce quartets of low-frequency modal
slownesses in the complex plane. The upper panel of Figure 5 concerns modes 18
( just outside the scope of Figure 3) and 17, joining at a double root on the
imaginary axis, while the middle panel concerns modes joining at double roots on
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the real axis. In the latter case, one of the modes proceeds initially to the negative
real axis (via a semiloop along the positive imaginary axis and two double roots at
the origin together with its mirror mode).

The lower panel of Figure 5 illustrates what may happen when a #uid-born mode
(9) appears between two solid-born modes (10 and 8). With a typical trajectory
according to the upper panel of Figure 4, mode 9 would disturb a combination of
modes 10 and 8 according to the middle panel of Figure 5. To handle this problem,
mode 9 is moved out into the complex plane after forming a double root on the
positive real axis together with mode !10. Subsequently, mode 10 initializes a loop
in the second quadrant. It forms a double root with mode 9 on the positive
imaginary axis. Mode 9 is thereby brought back to the axes, and it may proceed
towards its imaginary wavenumber limit as u tends to zero. At the same time,
mode 10 can complete its loop by forming a double root with its mirror mode at the
origin and proceeding along the negative real axis towards its collision point with
mode !8.

It is also useful to consider the evolution of the mode shapes as u tends to zero.
Figure 6 provides illuminating &&waterfall plots'' for glass-born mode 8, water-born
mode 9, and Al-born mode 11. It is below cuto! that the mode shapes become
simple (the cut-o! frequencies can be read from Figure 3). Figure 6 concerns normal
traction, and the e!ective free interface conditions for the solid-born modes appear
quite clearly. Modes 8 and 11 are apparently the lowest-order glass-born and
Al-born modes, respectively. Mode 9 is the third-order water-born mode (after
modes 4 and 7). This can also be clearly seen, although a plot of vertical
displacement would be preferable for illustrating the water-born modes and their
e!ective boundary conditions of rigid type. The mode shapes shown are in perfect
agreement with the theoretical results in reference [17, Theorem 5.2].

6. AN EXAMPLE FROM UNDERWATER ACOUSTICS

As a #uid}solid medium example from underwater acoustics, let us consider
a shallow-water waveguide with a homogeneous 50 m deep water layer with
velocity 1)430 km/s overlying a solid sediment bottom. The surface is assumed to be
free (pressure-release). The sediment bottom consists of two 10 m thick layers, an
upper sand/clay layer with P-velocity 1)700 km/s, S-velocity 0)650 km/s, and
density 1)5 kg/dm3, and a lower till layer with P-velocity 2)000 km/s, S-velocity
1)000 km/s, and density 1)9 kg/dm3. Below these two sediment layers, there is
a homogeneous crystalline bedrock half-space with P-velocity 6)000 km/s,
S-velocity 4)000 km/s, and density 2)6 kg/dm3. The parameter values have been
chosen with a view to representative conditions for parts of the Baltic. However, the
half-space velocities are somewhat high since we wish to have the S-wave branch
point at a convenient point (0)25 s/km) for visual purposes. In addition, absorption
has not been included in order to keep the high-frequency parts of the dispersion
curves real-valued.

Applying the techniques and results of sections 2 and 3, the low-frequency mode
structure (for modes such that lim infu?0

Dk(u) D(R) can be speci"ed as follows.
Since the lower termination of the medium is a homogeneous solid half-space, we



Figure 6. &&Waterfall plots'' showing depth dependence of modal normal traction magnitude from
0)1 to 8 MHz. The medium is the solid}#uid}solid trilayer considered in section 5, with water between
0)83 and 1)38 mm. The vertical axes are for depth, from 0 mm down to 2 mm. Upper panel: glass-born
mode 8, middle panel: water-born mode 9, lower panel: Al-born mode 11.
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have to deal with four Riemann sheets, ##, !#, #!, and !!, as de"ned in
section 4.2.

There are 12 modes for which limu?0
k (u)"0. They are all of Rayleigh type [16,

Theorem 4.1(iii)]. There are four modes on the #! sheet for small u, and we
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denote them by 1, 2, 11 , and 21 . As u tends to zero, mode 1 approaches
p"0)112345 s/km from the "rst quadrant, whereas mode 2 approaches
p"0)166650 s/km, also from the "rst quadrant. Modes 11 and 21 , with the bar
suggesting the complex conjugate, exhibit the corresponding complex conjugate
slownesses for small u. These four modes become leaky Rayleigh waves, which
have real phase velocities for a su$ciently small Poisson ratio [26, section 3.4].

We know from section 4.2 that the sign-shifted modal slownesses appear on the
&&opposite''Riemann sheet. Accordingly, we denote the corresponding modes on the
!# sheet by !1, !2, !11 , and !21 .

On each of the ## and !! sheets, there is a wave with p tending to the
ordinary Rayleigh slowness 0)279922 s/km as the frequency tends to zero. We
denote these modes by 0, on each of the two sheets. In each case, the mode !0
appears in addition on the &&opposite'' sheet. All 12 modes with limu?0

k (u)"0
have thereby been accounted for.

The modes with non-zero wavenumber limits q are in"nite in number, and the
q values close to the origin are shown in Figure 7. Considering the modes to be
&&born'' at low frequency, we get a classi"cation according to #uid- and solid-born
modes. The computation of the q for the solid-born modes was done using the
winding-number integral technique of reference [20], combined with factorization
of the compound-matrix propagators as proposed in section 3.1. The limits q for the
#uid-born modes appear simply as q"(n#1/2)ni/0)050 km~1, where n is an
integer, as obtained from section 2.1 and equation (24). According to equation (8),
the same non-zero q will appear on the #! and !# sheets. It follows from the
rules in section 4.2 that the o!-axes solid-born modal q in the upper panel of Figure
7 must appear in quartets, in a &&q,!q, qN ,!qN '' pattern, and that the wavenumber
limits for modes 3, 6, !7, 11 there are purely imaginary. As concerns the lower
panel, there is only a &&q, qN 11 pattern. For example, the wavenumber limits for modes
7 and 8 there are q"154)449#270)809i km~1 and q"!149)011#271)407i
km~1, respectively. The q on the ## sheet are not shown in Figure 7, but they are
obtained from the q of the !! sheet by changing signs.

Usual dispersion curves for real p are drawn in Figure 8. Note that the ## and
#! sheets have been combined in the upper panel, and that the !# and !!

sheets have been combined in the lower panel. The horizontal slowness p increases
upwards for the ## and !# sheets, and it increases downwards for the #!

and !! sheets. The central horizontal line in each panel is for the S-wave branch
point slowness 0)25 s/km. This kind of diagram combination is quite appropriate in
view of the results presented in section 4.2 concerning passage of the branch point
with the largest slowness. Indeed, except for one of the lowest-order modes 0, each
mode from the ## and !# sheets in Figure 8 will hit the S-wave branch point
as the frequency is decreased and change Riemann sheets. This behaviour is
particularly clear in the "gure concerning the modes from the !# sheet and mode
3 from the ## sheet. Most of the modes from the ## sheet will leave the real
axis on the #! sheet and get complex horizontal slownesses very soon as the
frequency is further decreased.

The mode numbers indicated in Figure 8 have been introduced separately for the
upper and lower panels. Except for the lowest-order modes 0, the modal slownesses



Figure 7. Non-vanishing low-frequency wavenumber limits on the #! sheet (upper panel) and
the !! sheet (lower panel) for the #uid}solid medium considered in section 6. Fluid- and solid-born
modes are denoted by the symbols s and d, respectively. The mode numbers in the two panels give
the connection to the dispersion curves on the ## and !# sheets, respectively, in Figure 8. The
bars on the axes denote $50 km~1. Note the di!erent scales for the real and imaginary parts.
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combine in pairs at double roots to form conjugate complex numbers (not shown)
as the frequency is decreased. The notation with &&1, 11 '', etc., has been used in the
obvious way to indicate this grouping of modes. Note that mode 0 from the !#

sheet proceeds with a real slowness on the !! sheet after hitting the S-wave
branch point. It approaches the ordinary Rayleigh slowness as the frequency tends
to zero.



Figure 8. Dispersion curves for the #uid}solid medium considered in section 6.
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By mode tracking in the complex plane, down to very low frequencies, we may
connect the modes shown in Figure 8 to the low-frequency mode structure as
speci"ed for the q"0 modes and shown in Figure 7 for the qO0 modes. The
appropriate mode numbers from Figure 8 have already been included in Figure 7.
Restricting ourselves to the modes with non-zero low-frequency wavenumber limits
q, it turns out that the modes from the ## and #! sheets in Figure 8 will appear
on the #! or !# sheets when the frequency has become low enough, and that
the modes from the !# and !! sheets in Figure 8 will appear on the !! sheet
at low frequency.

The six modes with vanishing low-frequency wavenumber limits (half of 12
modes, taking account of #! symmetry) are modes 0, 1, 2, 11 , and 21 from the ##

and #! sheets, and mode 0 from the !# and !! sheets. Among modes with
qO0, modes 4, 5, 10 (and 41 , 51 , 10) from the ## and #! sheets are #uid-born, as
are modes 1, 3, 6, 9, 10 (and 11 , 31 , 61 , 91 , 10) from the !# and !! sheets. The
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remaining modes 3, 6, 7, 8, 9, 11 (and 31 , 61 , 71 , 81 , 91 , 11) from the ## and #! sheets
are solid-born, as are the remaining modes 2, 4, 5, 7, 8 (and 21 , 41 , 51 , 71 , 81 ) from the
!# and !! sheets.

All modes with vanishing low-frequency wavenumber limits and all modes with
small q in Figure 7 are indeed included, suggesting a one-to-one correspondence
with the set of modes for which p becomes real as u becomes large.

Figure 9 shows some modal slowness trajectories, in schematic form, as
determined by the mode tracking for decreasing u. As in Figures 4 and 5, the
trajectories have been displaced from the axes even when p(u) is real or imaginary.
The upper and middle panels of Figure 9 show typical trajectories as the frequency
is decreased, with a change of Riemann sheets at the S-wave branch point (indicated
by the rightmost vertical bar) and a subsequent escape into the complex plane
initiated by a collision at a double root. In the middle panel, a further change of
Riemann sheets, from #! to !#, takes place as the trajectory crosses the
branch cuts to the left of the P-wave branch point (the left vertical bar on the
positive real axis). The trajectories for modes A and A1 intersect at the same
frequency here, but by temporarily changing to branch cuts that do not interfere,
the &&apparent'' intersection involves di!erent Riemann sheets and there is no
double root for D (u, p).

The lower panel of Figure 9 illustrates the complicated trajectories formed by
modes, 4, 5, 41 , and 51 from !# and !! sheets in Figure 8. As the frequency is
decreased, mode 5 hits the S-wave branch point and moves to the !! sheet where
it collides with mode 41 . The two modes move out into the complex plane, but they
return to the real axis at another double root at a smaller p. By lowering the
frequency further, mode 5 can proceed out along the positive real slowness axis and
enter the complex plane by forming a double root together with mode 51 . Mode
41 can proceed to smaller real p and meet mode 4, which is on its way out along the
positive real axis after having hit the S-wave branch point and changed Riemann
sheets.

In e!ect, mode 5 forms a loop causing modes 41 and 51 to change places in the
lower panel of Figure 8. Similar complications are not uncommon when tracking
dispersion curves. For example, we may compare with the plait patterns regularly
observed in dispersion curves for free homogeneous solid plates, e.g., reference [9].

The double roots referred to appear on the #! or !! sheets. They are not on
the physical sheet, and it is not obvious how the trajectories will be changed when
absorption is introduced. In fact, it turns out that the behaviour will be di!erent if
absorption is introduced in the homogeneous solid half-space or in the sediment
layers. The trajectories depicted schematically in Figure 9 are in agreement with the
e!ect of slight absorption in the homogeneous half-space but no absorption in the
sediment layers. The mode-number connections for the wavenumber limits in
Figure 7 have also been adapted to this case, as concerns &&q or qN ''.

As in section 5, it is useful to consider the evolution of the mode shapes as u tends
to zero. Figure 10 provides illuminating &&waterfall plots'' for some modes from the
## and #! sheets in Figure 8: the #uid-born modes 4 and 5, and the solid-born
modes 3 and 6. Again, it is below cuto! that the mode shapes become simple. The
cut-o! frequencies where the Riemann sheet is changed at the S-wave branch point,



Figure 9. Trajectories for p(u), in principle, as u decreases for the #uid}solid medium. Upper panel:
at high frequency, A is for modes 3, 6, 8, 11 on the ## sheet and modes 1, 2, 3, 6, 7, 8, 9, 10 on the
!# sheet. Additional features may appear. For example, the trajectory for the former mode 6 has
a small loop in the "rst quadrant. Although this has not been indicated, the low-frequency limits may
appear at di!erent sides of the imaginary axis (cf. the actual wavenumber limits according to Figure 7).
Middle panel: at high frequency, A is for modes 4, 5, 7, 9, 10 on the ## sheet. Lower panel: the mode
numbers have been indicated, at high frequency these modes are on the !# and !! sheets.
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and the lower frequencies where p (u) becomes complex at a double root, can be
read from Figure 8. Above cuto!, the dispersion curves exhibit a terrace-like
structure (cf. Figure 8) that is interrupted by osculation points at which modal
properties are exchanged and repulsion phenomena appear (cf. reference [27]).

Figure 10 concerns normal traction, and the e!ective free interface conditions for
the solid-born modes 3 and 6 appear quite clearly. Modes 4 and 5 are the



Figure 10. &&Waterfall plots'' showing depth dependence of modal normal traction magnitude from
1 to 80 Hz. The medium is the #uid}solid medium considered in section 6, with #uid between 0 and
50 m. The vertical axes are for depth, from 0 m down to 100 m. Upper panels: #uid-born modes 4 (left)
and 5 (right), lower panels: solid-born modes 3 (left) and 6 (right). All four modes are on the ## sheet
at the higher frequencies according to Figure 8, but they become leaky after hitting the S-wave branch
point.
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lowest-order and second-lowest-order #uid-born modes, respectively. The mode
shapes shown are in perfect agreement with the theoretical results in reference [17,
Theorem 5.2].

7. DISCUSSION

We have seen that the low-frequency mode structure, comprising all modes for
which lim infu?0

Dk(u) D(R, can be determined for each #uid}solid medium. The
wavenumber limit q"limu?0

k(u) always exists for such a mode. There will be
a "nite number of modes with q"0 [16; 17, Appendix A]. The modes with qO0
decouple into region-dependent classes, each #uid and each solid region in the
medium provides modes with low-frequency wavenumber limits q according to the
zeros of a certain entire analytic function. In the presence of homogeneous
half-spaces, di!erent analytic functions may appear for the di!erent Riemann
sheets. E!ective low-frequency boundary conditions develop at the #uid}solid
interfaces, with &&rigid'' towards the #uid and &&free'' towards the solid.

The low-frequency mode structure can be carried to higher frequencies by
tracking dispersion curves, i.e., by following continuous modal slowness trajectories
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p(u) for varying u. In the ideal case, each trajectory p (u) will extend continuously
from arbitrarily small u to arbitrarily large u, covering the whole interval (0,R),
and there are no modes with limu?0

Dk (u) D"R. Furthermore, for an
absorption-free medium, it appears that each p(u) will typically approach the real
axis and it may ultimately become real as u tends to in"nity. Under these ideal
circumstances, the rigorously derived low-frequency mode structure imposes
a canonical mode structure at each u, with a perfect one-to-one connection to
ordinary real-valued dispersion curves as u becomes large. Indeed, our examples in
sections 5 and 6 appear to be of this satisfactory type.

Unfortunately, there are exceptions to the ideal behaviour just outlined. First,
there are media which support low-frequency modes for which limu?0

Dk(u) D"R.
The simplest example appears to be a Pekeris waveguide, a homogeneous #uid
layer with P-velocity a and density o between a free or rigid surface and a lower
homogeneous #uid half-space with P-velocity a

L
and density o

L
, for which the

density is constant (o"o
L
). The asymptotic behaviour of the modes, with

limu?0
Dk(u) D"R, was speci"ed in reference [16, (7.1)]. The upper termination of

the medium may alternatively be another homogeneous half-space, either #uid or
solid, for which the density o

U
may be arbitrary. All of these modes with

limu?0
Dk(u) D"R are leaky for small u, with an exponential increase or inward

direction of oscillation in a terminating homogeneous half-space. We are not aware
of non-leaky examples. For homogeneous #uid or solid plates with free or rigid
boundaries, the low-frequency modal wavenumber limits do always exist as "nite
complex numbers.

A second imperfection is that we are not certain that each trajectory p(u) can
always be de"ned on all of (0,R). To illustrate the potential problem, consider
a simple medium with two homogeneous solid half-spaces separated by a #uid
region with vanishing thickness. (We temporarily allow interior #uid regions with
vanishing thickness.) The dispersion function can be expressed as

D(u, p)"o
L
b4
L
R

L
(p)RaU(p)#o

U
b4
U
R

U
(p)RaL(p), (43)

where Ra (p)"(p2!a~2)1@2 and R
L
, R

U
are the Rayleigh functions [16, (2.21)].

Considering the leaky Riemann sheet de"ned for large p by RaL(p)+p and
RaU(p)+!p, it follows that

D(u, p)+c
5
p5#c

3
p3#c

1
p#c

~1
p~1#2, (44)

where c
5
"8(o

U
b4
U
!o

L
b4
L
) and c

3
is typically non-vanishing. Let us now assume

that b
U

and b
L

are frequency-dependent in such a way that c
5
"0 for u"u

=
'0

but that c
5
O0 for uOu

=
. (Causality arguments prescribe some absorption in the

half-spaces in this case.) It follows that there are trajectories p (u) exhibiting
a singularity (p(u)PR) as u tends to u

=
.

A third appeal for caution concerns the anticipated connection to real-valued
dispersion curves for high frequencies in the absorption-free case. True, there are
mechanisms which appear to favour real p (u) as p becomes large. Suppose for
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simplicity that the largest medium slowness, c~1 say, appears within a layer of "nite
extent d in depth. For real p slightly less than c~1, the dispersion function D(u, p)
will then be real even in the presence of homogeneous half-spaces. As u tends to
in"nity, a countable in"nity of real modal slownesses p (u) will appear that increase
towards c~1, as controlled by the relative contribution of terms including the
rapidly oscillating factors cos(ud(c~2!p2)1@2) and sin(ud(c~2!p2)1@2). Indeed,
for a homogeneous solid plate with free boundaries, each p (u) tends to $b~1 as
u tends to in"nity, if we disregard the lowest-order modes, for which $p (u) tends
to the ordinary Rayleigh slowness [9, p. 210; 28, p. 450]. Interface-wave slowness
limits as u tends to in"nity may appear regularly, since the layers become thick as
compared to wavelength when the frequency is increased.

However, there are simple examples for which the modal slowness p(u) stays
complex as u tends to in"nity. For a homogeneous solid half-space with a large
Poisson ratio and a free boundary, there will be two conjugate complex leaky
Rayleigh-mode slownesses p (u) which are independent of u [26, section 3.4]. Leaky
modes that remain complex for high frequencies may also be quite common for
media with low-velocity half-spaces. Such media are of interest in connection with
studies of #uid-loaded plates, e.g., reference [12].

We do not know the precise existence conditions for modes with
limu?0

Dk(u) D"R, interrupted trajectories, or non-real high-frequency p (u) in the
absorption-free case. To clarify these issues would be topics for further research.

Dispersion curves as shown in general are typically restricted to the physical
sheet and real phase velocities. There are of course good reasons for this restriction,
since it is the modes above cuto! (and the &&fundamental'' modes without cuto! )
that dominate the "eld in connection with long-range propagation. However, the
mode structure above cuto! can be complicated since the modes may change
character and exchange properties at osculation points. Interference with double
roots and branch points cause further complications as concerns tracking of
dispersion curves through cuto!. Nevertheless, we have seen that it is at very low
frequencies, below cuto!, where the modal slowness no longer appears on the real
axis of the physical sheet, that a simple mode structure evolves providing useful
insight.
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APPENDIX A: CANCELLATION-FREE LOW-FREQUENCY PROPAGATORS
FOR HOMOGENEOUS LAYERS

It was shown in reference [21] that problems with loss of numerical precision by
cancellation e!ects may be encountered in connection with slow-wave dispersion
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computations at very low frequencies. The problems arise from the usual
expressions for the individual elements of the propagator matrices for
homogeneous solid layers. Alternative cancellation-free expressions had to be
derived in reference [21] to ascertain adequate accuracy.

The modes considered in reference [21] were slow modes for which the
horizontal slowness p tends to in"nity while the horizontal wavenumber k"up
tends to zero as u tends to zero. It turns out that the numerical cancellation
problems and the cure are quite analogous for all modes for which p tends to
in"nity while k tends to a "nite complex number q as u tends to zero.

Assuming a "xed qO0, we rewrite equations (21)}(23) as

P
F
(u, p)+diag(1, p~1) )Q

F
(q) ) diag(1, p), (A1)

P
S
(u, p)+diag(p~1, p~1, 1, 1) )Q

S
(q) ) diag(p, p, 1, 1), (A2)

PD
2

S
(u, p)+diag(p~1, 1, 1, 1, 1, p) )QD

2
S

(q) ) diag(p, 1, 1, 1, 1, p~1) (A3)

for small u with p"q/u. It follows that

P
F
(u, p)"A

O(1)
O(p~1)

O(p)
O(1)B , (A4)

P
S
(u, p)"A

O(1) O(1) O(p~1) O(p~1)

O(1) O(1) O(p~1) O(p~1)

O(p) O (p) O(1) O(1)

O(p) O (p) O(1) O(1) B , (A5)

P
S
(u, p)D2"A

O(1) O(p~1) O(p~1) O(p~1) O(p~1) O(p~2)

O(p) O(1) O(1) O(1) O(1) O(p~1)

O(p) O(1) O(1) O(1) O(1) O(p~1)

O(p) O(1) O(1) O(1) O(1) O(p~1)

O(p) O(1) O(1) O(1) O(1) O(p~1)

O(p2) O(p) O(p) O(p) O(p) O(1)
B . (A6)

For a homogeneous #uid layer, the usual expressions according to reference [21,
(35)] for the elements of P

F
(u, p) get the correct magnitude as prescribed by

equation (A4) as u tends to zero with p"q/u. The expressions according to
reference [22, (4)] for the elements of P

S
(u, p) for a homogeneous solid layer, on the

other hand, contain terms which are at least a factor p, in general a factor p2, too
large as compared to equation (A5). In the same way, most expressions according to
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reference [21, (13)] for the elements of the corresponding matrix B(u, p)"
P
S
(u, p)D2 contain terms which are too large by factors p2 or p4 as compared to

equation (A6). Numerical precision is lost when these large terms are not cancelled
exactly in low-frequency dispersion computations.

However, as is easily veri"ed, the terms of the alternative expressions for the
elements of P

S
(u, p) and B (u, p) according to reference [21, (38) and (31)}(34)] do

indeed exhibit the correct magnitudes as prescribed by equations (A5) and (A6).
Hence, they resolve the cancellation problems not only for the slow modes
considered in reference [21] but also for the low-frequency modes with up+qO0.
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